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Abstract
With the emergence of Artificial Intelligence (AI)-based
decision-making, explanations help increase new technol-
ogy adoption through enhanced trust and reliability. How-
ever, our experimental study challenges the notion that ev-
ery user universally values explanations. We argue that the
agreement with AI suggestions, whether accompanied by
explanations or not, is influenced by individual differences
in personality traits and the users’ comfort with technology.
We found that people with higher neuroticism and lower
technological comfort showed more agreement with the
recommendations without explanations. As more users be-
come exposed to eXplainable AI (XAI) and AI-based sys-
tems, we argue that the XAI design should not provide ex-
planations for users with high neuroticism and low technol-
ogy comfort. Prioritizing user personalities in XAI systems
will help users become better collaborators of AI systems.
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Introduction
As an attempt to make eXplainable AI (XAI) more under-
standable and user-friendly, studies have explored the effi-
cacy of single-style text explanation in varying AI-based so-
lutions [12, 24]. Research showed that users have a higher
perception of trust and transparency with text-based expla-
nations with adequate information [15, 8]. Moreover, peo-
ple’s acceptance of new information from either a human
or an AI agent depends on their personality traits [16, 14,
11]. However, the acceptance of explanations by XAI-based
systems based on the relationship between individual per-
sonality traits and the type of explanation presented to the
user is understudied. Therefore, we seek to understand
how users with different personalities accept explanations
containing varying levels of information in an AI classifier
system. In our study, we investigated the influence of three
types of single-style text explanations: 1) no explanation,
2) placebic, and 3) meaningful explanations [8] based on
participants’ personality traits (neuroticism and conscien-
tiousness) and technology comfort.

Personality traits considered
in this study [2]

Neuroticism: the tendency to
experience unpleasant emo-
tions, such as anxiety, depres-
sion, and emotional volatility.

Conscientiousness: the ten-
dency to show self-discipline,
aim for achievement, and hav-
ing the attributes of organiza-
tion, productivity, responsibility.

We designed an online user study (N = 224) with a simu-
lated AI classifier interface to compare how participants with
varying technological comfort, neuroticism, and conscien-
tiousness agreed with the classifier with varying explanation
types. We show that participants with low technology com-
fort and participants with higher neuroticism prefer prompts
without any explanation, showing the need to evaluate user
technology comfort and personality traits before deploying
explanations in any XAI-based classifier or recommender.

Are Explanations Acceptable by Everyone?
As XAI-based systems become popular in daily and produc-
tive tasks, more people are introduced to various AI tech-
nologies with explanations [20]. However, the ultimate goal
of explainable AI is to aid users, making it important to un-

derstand if the preference for explanations varies based on
the unique personality traits of users. For this reason, we
focus on participants’ tendency to agree with different levels
of information (no explanation, placebic, meaningful) based
on their neuroticism, conscientiousness, and tech comfort.

Neuroticism denotes the tendency or disposition to expe-
rience negative emotional states. People with high neu-
roticism are more likely to respond poorly to environmental
stress and suspect negative outcomes from an ordinary
situation [2, 25]. Conscientiousness is about being care-
ful, diligent, and thorough in daily activities. A person with
high conscientiousness tends to pay attention to details and
ensure that their deliverables are correct [18]. Barnett et
al. have shown that higher neuroticism negatively affects
technology use and higher conscientiousness influences
a person to use technologies [1]. Therefore, we contend
that individuals exhibiting higher levels of neuroticism will
opt for reduced information to mitigate distractions, and par-
ticipants with higher conscientiousness will lean towards
increased information provided by XAI-based systems to
enhance task accuracy. Technological comfort refers to the
ease and confidence of a person in using technological
tools. This enables them to understand the technology and
critically evaluate the information provided by the system.
Park et al. [17] posited that users’ confidence in technology-
provided information tends to be lower among individu-
als with limited technological competence than users with
higher technological skills. Therefore, we hypothesize that
participants with lower technological comfort will prefer min-
imal information in XAI-based systems. Based on previous
findings that analyze the effect of neuroticism, conscien-
tiousness, and tech comfort on user agreeability, [18, 1],
we propose the following hypotheses in the context of XAI.
H1: Participants with lower tech comfort agree more with



classifications without explanations compared to classifica-
tions with meaningful explanations
H2: Participants with higher neuroticism agree more with
classifications without explanations compared to classifica-
tions with meaningful explanations
H3: Participants with higher conscientiousness agree more
with classifications with meaningful explanations compared
to classifications without explanations

Method
Figure 1: Sample blurred image of
a trophy

Sample Explanations

Correct Explanations

No exp.: This is a trophy.
Placebic: This is a trophy be-
cause it looks like a trophy.
Meaningful: This is a trophy
because it has a gold-colored
cup and a white square base.

Incorrect Explanations

No explanation: This is a
medal.
Placebic: This is a medal be-
cause it looks like a medal.
Meaningful: This is a medal
because it is circular, gold and
hanging from a ribbon.

The study consisted of a norming study and an agreeability
measurement study, both using a between-subject study
design. In the norming study, 100 well-known object images
were selected from the BOSS stimulus set [4], and Gaus-
sian blur filters with various levels were applied to deter-
mine the optimal blur level (sigma 115) that balanced iden-
tifiability. Participants (N = 60) viewed 50 blurred images
randomly from a pool of 61 images. They identified the ob-
ject and briefly described the characteristics that helped
their identification. We used the most frequently stated
characteristics to generate meaningful explanations and
the second most frequently labeled objects as the incorrect
labels for the agreement measure study. This ensured that
the meaningful explanations for both correct and incorrect
labels were based on object characteristics that humans
found useful in identifying distorted images. In the agree-
ability measurement study, participants (N=225) were ran-
domly assigned to one of three explanation conditions (no
explanation, placebic, and meaningful) as part of the design
between subjects. They were asked to rate their agreement
with the AI’s classification of the image on a 7-point Likert
scale. Among the 60 images shown to each participant, 48
(80%) were correctly labeled for the three explanation con-
ditions. To ensure accurate balance, correct answers were
counterbalanced using a modified Latin square design [19].
The study explored the relationship between personality,

technology comfort, and participant agreement with the AI
classifier for the three types of explanations. We used the
Big 5 personality inventory (10-item version) [3] to assess
the neuroticism and conscientiousness of the participants
via the mean score of the corresponding items. To mea-
sure technology comfort we simply asked participants how
much they agreed/disagreed with the following statement
“Operating and using everyday technology is easy for me”.
Additionally, we incorporated the technology acceptance
questionnaire (TAM) [7]. The participants were recruited
through Prolific 1 and were all adults from the United States.
We paid $7.00 to each participant for a completed study
regardless of their response quality. The payment amount
was calculated to be above $15/hour which surpasses the
recommended minimum wage [22] in the study’s location.
Statistical analysis used a linear mixed-effects model, treat-
ing explanation type, technology comfort, neuroticism, and
conscientiousness as fixed effects, and participant and im-
ages as random effects.

Findings
Effect of Technology Comfort and Explanation Type
Participants indicating lower level of comfort with new tech-
nology were more likely to agree with the AI classifier when
there were no explanations, compared to the other two con-
ditions in which the AI classifier presented meaningful and
placebic explanations (Fig. 3). This finding suggests that
users low in technological comfort are less comfortable nav-
igating ‘new’ technology that explains itself (supporting H1).

Effect of Neuroticism and Explanation Type
From Table 1, it is clear that individuals with greater neuroti-
cism were more likely to agree with the recommendations
that lacked explanations, compared to the recommenda-
tions with either meaningful or placebo information. In con-

1https://www.prolific.com/

https://www.prolific.com/


Figure 2: Relation of neuroticism and agreement to AI classifier

trast, participants with lower levels of neuroticism showed
no differences in their agreement with recommendations
based on the type of explanation provided. (Fig. 2). The re-
sult indicates that participants with higher emotional volatil-
ity think that the classifier is more likely to be correct when
the classifier provides less information compared to when
the classifier provides more text in the form of meaningful
and placebic explanations (supporting H2).

Effect of Conscientiousness and Explanation Type
In contrast to our hypotheses, we did not find significant dif-
ferences in participant agreement with the AI classifier pre-
senting varying types of explanations (Table 1). This result
suggests that conscientiousness may not directly affect the

Figure 3: Relation of tech comfort and agreement to AI classifier

reaction of the participant to the varying explanation types,
failing to support H3.

Discussion
Increased agreement to classifications without explanation
can provide insight for inclusive eXplainable AI (XAI) de-
sign, facilitating action-oriented nudges for improved user
collaboration with fast-moving AI. Our findings show that
individuals with higher neuroticism and low-tech comfort
tend to prefer minimal or no explanations. The inclination of
participants with lower comfort in technology towards pre-
ferring minimal information aligns with previous research
indicating that decreased technological competence cor-
relates with reduced reliance on technology, resulting in



Effects Estimate Std. Error

TC: Meaningful 0.27∗∗ 0.1
TC: Placebic 0.21∗ 0.08
Neuro: Meaningful −0.13∗ 0.06
Neuro: Placebic −0.15∗ 0.07
Conscience: Meaningful −0.15 0.09
Conscience: Placebic −0.06 0.1

Table 1: Linear Mixed Model results for Agreement with the AI
classifier. (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). TC = Tech
Comfort, Neuro= Neuroticism, Conscience= Conscientiousness

diminished trust in information delivered by new technolog-
ical platforms [17]. Furthermore, excessive information can
overwhelm certain personalities and increase perceived
complexity [13], reducing efficacy for people with higher
neuroticism. Moreover, perceived technological insecurity,
particularly among people with high neuroticism and low-
tech comfort, may contribute to a preference for minimal
explanations from AI classifiers [6, 23, 10]. Psychologi-
cally informed approaches to AI-based systems are rec-
ommended, highlighting the importance of personalizing
explanations based on user traits to improve acceptance
and adaptation to AI technologies [9]. For users with low
technological comfort, providing personalized support and
training resources tailored to their existing comfort levels is
crucial to enhance their technology and AI comfort.

Our lack of supporting evidence for effects between con-
scientiousness and the preference for meaningful explana-
tions fails to support Chiou et al.’s finding that people with
high internal locus of control (LoC) are comfortable with
robots exhibiting more information and control for naviga-
tion tasks [5]. LoC refers to the belief of people that their
actions and behaviors affect the outcomes of events in their

lives [21]. Interestingly, participants with higher conscien-
tiousness do not have a higher preference for meaningful
explanations, that provide more control to the participants.

Designing XAI systems considering user personality and
preferences is crucial for ensuring user satisfaction and XAI
systems’ effectiveness. Different users have varying thresh-
olds for information complexity and detail, influenced by
their personality traits, cognitive styles, and context-specific
needs. User acceptance and trust in XAI systems can be
enhanced by incorporating user-profiles and allowing for
adjustable explanation levels. This approach respects indi-
vidual user preferences and improves the overall user expe-
rience by providing information in explanations as the user
requires. Such flexibility ensures that XAI systems are not
just tools for transparency, but are also adaptable interfaces
that enable users to engage with AI on their own terms.

Conclusion
The interplay between user personality traits, technologi-
cal comfort, and explanation level presents both challenges
and opportunities to create more effective and engaging
XAI designs. Certain user traits like higher neuroticism and
lower technological comfort, need a “less is more” approach
to ensure accessible and inclusive XAI design. By paying
attention to the diverse needs and preferences of users,
XAI designers can develop systems that are more welcom-
ing, easier to use, and conducive to human-AI collabora-
tion.
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